Irreducibility of the Punctual Quotient Scheme of a Surface

Geir Ellingsrud Manfred Lehn

Abstract

It is shown that the punctual quotient scheme Q_{ℓ}^{r} parametrizing all zerodimensional quotients $\mathcal{O}_{\mathbb{A}^{2}}^{\oplus r} \rightarrow T$ of lenght ℓ and supported at some fixed point $0 \in \mathbb{A}^{2}$ in the plane is irreducible.

Let X be a smooth projective surface, E a locally free sheaf of rank $r \geq 1$ on X, and let $\ell \geq 1$ be an integer. Quot (E, ℓ) denotes Grothendieck's quotient scheme [7] that parametrizes all quotients $E \rightarrow T$, where T is a zero-dimensional sheaf of length ℓ. Sending a quotient $E \rightarrow T$ to the point $\sum_{x \in X} \ell\left(T_{x}\right) x$ in the symmetric product $S^{\ell}(X)$ defines a morphism $\pi: \operatorname{Quot}(E, \ell) \rightarrow S^{\ell}(X)$ [7]. It is the purpose of this note to prove the following theorem:

Theorem $1-\operatorname{Quot}(E, \ell)$ is an irreducible scheme of dimension $\ell(r+1)$. The fibre of the morphism $\pi: \operatorname{Quot}(E, \ell) \rightarrow S^{\ell}(X)$ over a point $\sum_{x} \ell_{x} x$ is irreducible of dimension $\sum_{x}\left(r \ell_{x}-1\right)$.

Using the irreducibility result, one can check that a generic point in the fibre over $\ell x \in S^{\ell}(X)$ represents a quotient $E \rightarrow T$, where $T \cong \mathcal{O}_{X, x} /\left(s, t^{\ell}\right)$ and s and t are apropriately chosen local parameters in $\mathcal{O}_{X, x}$, i.e. T is the structure sheaf of a curvilinear subscheme in X.

If $r=1$, i.e. if E is a line bundle, then $\operatorname{Quot}(E, \ell)$ is isomorphic to the Hilbert scheme $\operatorname{Hilb}^{\ell}(X)$. For this case, the first assertion of the theorem is due to Fogarty [5], whereas the second assertion was proved by Briançon [2]. For general $r \geq 2$, the first assertion of the theorem is a result due to J . Li and D. Gieseker [8],[6]. We give a different proof with a more geometric flavour, generalising a technique from Ellingsrud and Strømme [4]. The second assertion is a new result for $r \geq 2$. After finishing this paper we learned about a different approach by Baranovsky [1].

The natural generalizations of the theorem to higher dimensional or singular varieties are false, as is already apparent in the $r=1$ case of the Hilbert schemes: The dimensions of the strata of quotients which are concentrated in some fixed point grow much faster with ℓ than the expected dimension of the 'generic' stratum.

1 Elementary Modifications

Let X be a smooth projective surface and $x \in X$. If N is a coherent $\mathcal{O}_{X^{-}}$ sheaf, $e\left(N_{x}\right)=\operatorname{hom}_{X}(N, k(x))$ denotes the dimension of the fibre $N(x)$, which by Nakayama's Lemma is the same as the minimal number of generators of the stalk N_{x}. If T is a coherent sheaf with zero-dimensional support, we denote by $i\left(T_{x}\right)=\operatorname{hom}_{X}(k(x), T)$ the dimension of the socle of T_{x}, i.e. the submodule $\operatorname{Soc}\left(T_{x}\right) \subset T_{x}$ of all elements that are annihilated by the maximal ideal in $\mathcal{O}_{X, x}$.

Lemma 2 - Let $[q: E \rightarrow T] \in \operatorname{Quot}(E, \ell)$ be a closed point and let N be the kernel of q. Then the socle dimension of T and the number of generators of N at x are related as follows:

$$
e\left(N_{x}\right)=i\left(T_{x}\right)+r .
$$

Proof. Write $e\left(N_{x}\right)=r+i$ for some integer $i \geq 0$. Then there is a minimal free resolution $0 \longrightarrow \mathcal{O}_{X, x}^{i} \xrightarrow{\alpha} \mathcal{O}_{X, x}^{r+i} \longrightarrow N_{x} \longrightarrow 0$, where all coefficients of the homomorphism α are contained in the maximal ideal of $\mathcal{O}_{X, x}$. We have $\operatorname{Hom}\left(k(x), T_{x}\right) \cong \operatorname{Ext}_{X}^{1}\left(k(x), N_{x}\right)$ and applying the functor $\operatorname{Hom}(k(x),$.$) one finds$ an exact sequence

$$
0 \longrightarrow \operatorname{Ext}_{X}^{1}\left(k(x), N_{x}\right) \longrightarrow \operatorname{Ext}_{X}^{2}\left(k(x), \mathcal{O}_{X, x}^{i}\right) \xrightarrow{\alpha^{\prime}} \operatorname{Ext}_{X}^{2}\left(k(x), \mathcal{O}_{X, x}^{r+i}\right)
$$

But as α has coefficients in the maximal ideal, the homomorphism α^{\prime} is zero. Thus $\operatorname{Hom}(k(x), T) \cong \operatorname{Ext}_{X}^{2}\left(k(x), \mathcal{O}_{X, x}^{i}\right) \cong k(x)^{i}$.

The main technique for proving the theorem will be induction on the length of T. Let N be the kernel of a surjection $E \rightarrow T$, let $x \in X$ be a closed point, and let $\lambda: N \rightarrow k(x)$ be any surjection. Define a quotient $E \rightarrow T^{\prime}$ by means of the following push-out diagram:

In this way every element $\langle\lambda\rangle \in \mathbb{P}(N(x))$ determines a quotient $E \rightarrow T^{\prime}$ together with an element $\langle\mu\rangle \in \mathbb{P}\left(\operatorname{Soc}\left(T_{x}^{\prime}\right)^{\vee}\right)$. (Here $W^{\vee}:=\operatorname{Hom}_{k}(W, k)$ denotes the vector space dual to W.) Conversely, if $E \rightarrow T^{\prime}$ is given, any such $\langle\mu\rangle$ determines $E \rightarrow T$ and a point $\langle\lambda\rangle$. We will refer to this situation by saying that T^{\prime} is obtained from T by an elementary modification.

We need to compare the invariants for T and T^{\prime} : Obviously, $\ell\left(T^{\prime}\right)=\ell(T)+1$. Applying the functor $\operatorname{Hom}(k(x),$.$) to the upper row in the diagram we get an exact$ sequence

$$
0 \longrightarrow k(x) \longrightarrow \operatorname{Soc}\left(T_{x}^{\prime}\right) \rightarrow \operatorname{Soc}\left(T_{x}\right) \longrightarrow \operatorname{Ext}_{X}^{1}(k(x), k(x)) \cong k(x)^{2}
$$

and therefore $\left|i\left(T_{x}\right)-i\left(T_{x}^{\prime}\right)\right| \leq 1$. Moreover, we have $0 \leq e\left(T_{x}^{\prime}\right)-e\left(T_{x}\right) \leq 1$. Two cases deserve closer inspection. Firstly, if e increases, then T^{\prime} splits:

Lemma 3 - Consider the natural homomorphisms $g: N(x) \rightarrow E(x)$ and $f:$ $\operatorname{Soc}\left(T_{x}^{\prime}\right) \rightarrow T_{x}^{\prime} \rightarrow T^{\prime}(x)$. The following assertions are equivalent

1. $e\left(T_{x}^{\prime}\right)=e\left(T_{x}\right)+1$
2. $\langle\mu\rangle \notin \mathbb{P}\left(\operatorname{ker}(f)^{\vee}\right)$
3. $\langle\lambda\rangle \in \mathbb{P}(\operatorname{im}(g))$.

Moreover, if these conditions are satisfied, then $T^{\prime} \cong T \oplus k(x)$ and $i\left(T_{x}^{\prime}\right)=i\left(T_{x}\right)+1$.

Proof. Clearly, $e\left(T_{x}^{\prime}\right)=e\left(T_{x}\right)+1$ if and only if $\mu(1)$ represents a non-trivial element in $T^{\prime}(x)$ if and only if μ has a left inverse if and only if λ factors through E.

Secondly, if i increases for all modifications λ from T to any T^{\prime}, then the same phenomenon occurs for all 'backwards' modifications μ^{\prime} from T to any T^{-}:

Lemma 4 - Still keeping the notations above, let $E \rightarrow T_{\lambda}^{\prime}$ be the modification of $E \rightarrow T$ determined by the point $\langle\lambda\rangle \in \mathbb{P}(N(x))$. Similarly, for $\left\langle\mu^{\prime}\right\rangle \in \mathbb{P}\left(\operatorname{Soc}\left(T_{x}\right)^{\vee}\right)$ let $T_{\mu^{\prime}}^{-}=T / \mu^{\prime}(k(x))$. If $i\left(T_{\lambda, x}^{\prime}\right)=i\left(T_{x}\right)+1$ for all $\langle\lambda\rangle \in \mathbb{P}(N(x))$, then $i\left(T_{x}\right)=$ $i\left(T_{\mu^{\prime}, x}^{-}\right)-1$ for all $\left\langle\mu^{\prime}\right\rangle \in \mathbb{P}\left(\operatorname{Soc}\left(T_{x}\right)^{\vee}\right)$ as well.

Proof. Let $\Phi: \operatorname{Hom}_{X}(N, k(x)) \rightarrow \operatorname{Hom}_{k}\left(\operatorname{Ext}_{X}^{1}(k(x), N), \operatorname{Ext}_{X}^{1}(k(x), k(x))\right)$ be the homomorphism which is adjoint to the natural pairing

$$
\operatorname{Hom}_{X}(N, k(x)) \otimes \operatorname{Ext}_{X}^{1}(k(x), N) \rightarrow \operatorname{Ext}_{X}^{1}(k(x), k(x))
$$

Identifying $\operatorname{Soc}\left(T_{x}\right) \cong \operatorname{Ext}_{X}^{1}(k(x), N)$, we see that $i\left(T_{\lambda, x}^{\prime}\right)=1+i\left(T_{x}\right)-\operatorname{rank}(\Phi(\lambda))$. The action of $\Phi(\lambda)$ on a socle element $\mu^{\prime}: k(x) \rightarrow T$ can be described by the following diagram of pull-backs and push-forwards

$$
\begin{array}{ccccccccc}
0 & \rightarrow & N & \rightarrow & E & \rightarrow & T & \rightarrow & 0 \\
& & \| & & \uparrow & & \uparrow \mu^{\prime} & & \\
0 & \rightarrow & N & & \rightarrow & N_{\mu^{\prime}}^{-} & \rightarrow & k(x) & \rightarrow \\
& & \lambda \downarrow & & \downarrow & & \| & & \\
0 & \rightarrow & k(x) & \rightarrow & \xi & \rightarrow & k(x) & \rightarrow & 0
\end{array}
$$

The assumption that $i\left(T_{\lambda, x}^{\prime}\right)=1+i\left(T_{x}\right)$ for all λ, is equivalent to $\Phi=0$. This implies that for every μ^{\prime} and every λ the extension in the third row splits, which in turn means that every λ factors through $N_{\mu^{\prime}}^{-}$, i.e. that $N(x)$ embeds into $N_{\mu^{\prime}}^{-}(x)$. Hence, for $T_{\mu^{\prime}}^{-}=E / N_{\mu^{\prime}}^{-}=\operatorname{coker}(\mu)$ we get $i\left(T_{\mu^{\prime}, x}^{-}\right)=e\left(N_{\mu^{\prime}, x}^{-}\right)-r=e\left(N_{x}\right)+1-r=$ $i\left(T_{x}\right)+1$.

2 The Global Case

Let $Y_{\ell}=\operatorname{Quot}(E, \ell) \times X$, and consider the universal exact sequence of sheaves on Y_{ℓ} :

$$
0 \rightarrow \mathcal{N} \rightarrow \mathcal{O}_{\text {Quot }} \otimes E \rightarrow \mathcal{T} \rightarrow 0
$$

The function $y=(s, x) \mapsto i\left(\mathcal{T}_{s, x}\right)$ is upper semi-continuous. Let $Y_{\ell, i}$ denote the locally closed subset $\left\{y=(s, x) \in Y_{\ell} \mid i\left(\mathcal{T}_{s, x}\right)=i\right\}$ with the reduced subscheme structure.

Proposition $5-Y_{\ell}$ is irreducible of dimension $(r+1) \ell+2$. For each $i \geq 0$ one has $\operatorname{codim}\left(Y_{\ell, i}, Y_{\ell}\right) \geq 2 i$,

Clearly, the first assertion of the theorem follows from this.
Proof. The proposition will be proved by induction on ℓ, the case $\ell=1$ being trivial: $Y_{1}=\mathbb{P}(E) \times X$, the stratum $Y_{1,1}$ is the graph of the projection $\mathbb{P}(E) \rightarrow X$ and $Y_{1, i}=\emptyset$ for $i \geq 2$. Hence suppose the proposition has been proved for some $\ell \geq 1$.

We describe the 'global' version of the elementary modification discussed above. Let $Z=\mathbb{P}(\mathcal{N})$ be the projectivization of the family \mathcal{N} and let $\varphi=\left(\varphi_{1}, \varphi_{2}\right): Z \rightarrow$
$Y_{\ell}=\operatorname{Quot}(E, \ell) \times X$ denote the natural projection morphism. On $Z \times X$ there is canonical epimorphism

$$
\Lambda:\left(\varphi_{1} \times \operatorname{id}_{X}\right)^{*} \mathcal{N} \rightarrow\left(\operatorname{id}_{Z}, \varphi_{2}\right)_{*} \varphi^{*} \mathcal{N} \rightarrow\left(\operatorname{id}_{Z}, \varphi_{2}\right)_{*} \mathcal{O}_{Z}(1)=: \mathcal{K} .
$$

As before we define a family \mathcal{T}^{\prime} of quotients of length $\ell+1$ by means of Λ :

Let $\psi_{1}: Z \rightarrow \operatorname{Quot}(E, \ell+1)$ be the classifying morphism for the family \mathcal{T}^{\prime}, and define $\psi:=\left(\psi_{1}, \psi_{2}:=\varphi_{2}\right): Z \rightarrow Y_{\ell+1}$. The scheme Z together with the morphisms $\varphi: Z \rightarrow Y_{\ell}$ and $\psi: Z \rightarrow Y_{\ell+1}$ allows us to relate the strata $Y_{\ell, i}$ and $Y_{\ell+1, j}$. Note that $\psi(Z)=\bigcup_{j \geq 1} Y_{\ell+1, j}$.

The fibre of φ over a point $(s, x) \in Y_{\ell, i}$ is given by $\mathbb{P}\left(\mathcal{N}_{s}(x)\right) \cong \mathbb{P}^{r-1+i}$, since $\operatorname{dim}\left(\mathcal{N}_{s}(x)\right)=r+i\left(T_{s, x}\right)=r+i$ by Lemma 2. Similarly, the fibre of ψ over a point $\left(s^{\prime}, x\right) \in Y_{\ell+1, j}$ is given by $\mathbb{P}\left(\operatorname{Soc}\left(\mathcal{T}_{s^{\prime}, x}^{\prime}\right)^{\vee}\right) \cong \mathbb{P}^{j-1}$. If T^{\prime} is obtained from T by an elementary modification, then $\left|i\left(T^{\prime}\right)-i(T)\right| \leq 1$ as shown above. This can be stated in terms of φ and ψ as follows: For each $j \geq 1$ one has:

$$
\psi^{-1}\left(Y_{\ell+1, j}\right) \subset \bigcup_{|i-j| \leq 1} \varphi^{-1}\left(Y_{\ell, i}\right) .
$$

Using the induction hypothesis on the dimension of $Y_{\ell, i}$ and the computation of the fibre dimension of φ and ψ, we get

$$
\operatorname{dim}\left(Y_{\ell+1, j}\right)+(j-1) \leq \max _{|i-j| \leq 1}\{(r+1) \ell+2-2 i+(r-1+i)\}
$$

and

$$
\operatorname{dim}\left(Y_{\ell+1, j}\right) \leq(r+1)(\ell+1)+2-2 j-\min _{|i-j| \leq 1}\{i-j+1\} .
$$

As $\min _{|i-j| \leq 1}\{i-j+1\} \geq 0$, this proves the dimension estimates of the proposition.
It suffices to show that Z is irreducible. Then $\operatorname{Quot}(E, \ell+1)=\psi_{1}(Z)$ and $Y_{\ell+1}$ are irreducible as well.

Since X is a smooth surface, the epimorphism $\mathcal{O}_{\text {Quot }} \otimes E \rightarrow \mathcal{T}$ can be completed to a finite resolution

$$
0 \longrightarrow \mathcal{A} \longrightarrow \mathcal{B} \longrightarrow \mathcal{O}_{\text {Quot }} \otimes E \longrightarrow \mathcal{T} \longrightarrow 0
$$

with locally free sheaves \mathcal{A} and \mathcal{B} on Y_{ℓ} of rank n and $n+r$, respectively, for some positive integer n. It follows that $Z=\mathbb{P}(\mathcal{N}) \subset \mathbb{P}(\mathcal{B})$ is the vanishing locus of the composite homomorphism $\varphi^{*} \mathcal{A} \rightarrow \varphi^{*} B \rightarrow \mathcal{O}_{\mathbb{P}(\mathcal{B})}(1)$. In particular, assuming by induction that Y_{ℓ} is irreducible, Z is locally cut out from an irreducible variety of dimension $(r+1) \ell+2+(r+n-1)$ by n equations. Hence every irreducible component of Z has dimension at least $(r+1)(\ell+1)$. But the dimension estimates for the stratum $Y_{\ell, i}$ and the fibres of φ over it yield:

$$
\operatorname{dim}\left(\varphi^{-1}\left(Y_{\ell, i}\right)\right) \leq(r+1) \ell+2-2 i+(r+i-1)=(r+1)(\ell+1)-i,
$$

which is strictly less than the dimension of any possible component of Z, if $i \geq 1$. This implies that the irreducible variety $\varphi^{-1}\left(Y_{\ell, 0}\right)$ is dense in Z. Moreover, since the fibre of ψ over $Y_{\ell+1,1}$ is zero-dimensional, $\operatorname{dim}\left(Y_{\ell+1}\right)=\operatorname{dim}\left(Y_{\ell+1,1}\right)+2=\operatorname{dim}(Z)+2$ has the predicted value.

3 The Local Case

We now concentrate on quotients $E \rightarrow T$, where T has support in a single fixed closed point $x \in X$. For those quotients the structure of E is of no importance, and we may assume that $E \cong \mathcal{O}_{X}^{r}$. Let Q_{ℓ}^{r} denote the closed subset

$$
\left\{\left[\mathcal{O}_{X}^{r} \rightarrow T\right] \in \operatorname{Quot}\left(\mathcal{O}_{X}^{r}, \ell\right) \mid \operatorname{Supp}(T)=\{x\}\right\}
$$

with the reduced subscheme structure. We may consider Q_{ℓ}^{r} as a subscheme of $Y_{\ell, 1}$ by sending $[q]$ to $([q], x)$. Then it is easy to see that $\varphi^{-1}\left(Q_{\ell}^{r}\right)=\psi^{-1}\left(Q_{\ell+1}^{r}\right)$. Let this scheme be denoted by Z^{\prime}.

We will use a stratification of Q_{ℓ}^{r} both by the socle dimension i and the number of generators e of T and denote the corresponding locally closed subset by $Q_{\ell, i}^{r, e}$. Moreover, let $Q_{\ell, i}^{r}=\bigcup_{e} Q_{\ell, i}^{r, e}$ and define $Q_{\ell}^{r, e}$ similarly. Of course, $Q_{\ell, i}^{r, e}$ is empty unless $1 \leq i \leq \ell$ and $1 \leq e \leq \min \{r, \ell\}$.

To prove the second half of the theorem it suffices to show:

Proposition $6-Q_{\ell}^{r}$ is an irreducible variety of dimension $r \ell-1$.
Lemma $7-\operatorname{dim}\left(Q_{\ell, i}^{r, e}\right) \leq(r \ell-1)-\left(2(i-1)+\binom{e}{2}\right)$.
Proof. By induction on ℓ : if $\ell=1$, then $Q_{1}^{r} \cong \mathbb{P}^{r-1}$, and $Q_{1, i}^{r, e}=\emptyset$ if $e \geq 2$ or $i \geq 2$. Assume that the lemma has been proved for some $\ell \geq 1$.

Let $\left[q^{\prime}: \mathcal{O}_{X}^{r} \rightarrow T^{\prime}\right] \in Q_{\ell+1, j}^{r, e}$ be a closed point. Suppose that the map $\mu: k(x) \rightarrow$ $T^{\prime}(x)$ represents a point in $\psi^{-1}\left(\left[q^{\prime}\right]\right)=\mathbb{P}\left(\operatorname{Soc}\left(T_{x}^{\prime}\right)^{\vee}\right)$ and that $T_{\mu}=\operatorname{coker}(\mu)$ is the corresponding modification. If $i=i\left(T_{\mu, x}\right)$ and $\varepsilon=e\left(T_{\mu, x}\right)$, then, according to Section 1, the pair (i, ε) can take the following values:

$$
\begin{equation*}
(i, \varepsilon)=(j-1, e-1),(j-1, e),(j, e) \text { or }(j+1, e) \tag{1}
\end{equation*}
$$

in other words:

$$
\psi^{-1}\left(Q_{\ell+1, j}^{r, e}\right) \subset \varphi^{-1}\left(Q_{\ell, j-1}^{r, e-1}\right) \cup \bigcup_{|i-j| \leq 1} \varphi^{-1}\left(Q_{\ell, i}^{r, e}\right)
$$

Subdivide $A=Q_{\ell, j}^{r, e}$ into four locally closed subsets $A_{i, \varepsilon}$ according to the generic value of (i, ε) on the fibres of ψ. Then

$$
\operatorname{dim}\left(A_{i, \varepsilon}\right)+(j-1) \leq \operatorname{dim}\left(Q_{\ell, i}^{r, \varepsilon}\right)+d_{i, \varepsilon}
$$

where $d_{i, \varepsilon}$ is the fibre dimension of the morphism

$$
\varphi: \psi^{-1}\left(A_{i, \varepsilon}\right) \cap \varphi^{-1}\left(Q_{\ell, i}^{r, \varepsilon}\right) \longrightarrow Q_{\ell, i}^{r, \varepsilon}
$$

By the induction hypothesis we have bounds for $\operatorname{dim}\left(Q_{\ell, i}^{r, \varepsilon}\right)$, and we can bound $d_{i, \varepsilon}$ in the four cases (1) as follows:
A) Let $\left[q: \mathcal{O}_{X}^{r} \rightarrow T\right] \in Q_{\ell, j-1}^{r, e-1}$ be a closed point with $N=\operatorname{ker}(q)$. As we are looking for modifications T^{\prime} with $e\left(T_{x}^{\prime}\right)=e$, we are in the situation of Lemma 3 and may conclude

$$
\begin{aligned}
\varphi^{-1}([q]) \cap \psi^{-1}\left(A_{e-1, j-1}\right) & \cong \mathbb{P}\left(\operatorname{im}\left(g: N(x) \rightarrow k(x)^{r}\right)\right) \\
& \cong \mathbb{P}\left(\operatorname{ker}\left(k(x)^{r} \rightarrow T(x)\right)\right) \cong \mathbb{P}^{r-e}
\end{aligned}
$$

since $\operatorname{im}\left(k(x)^{r} \rightarrow T(x)\right) \cong k^{e-1}$. Hence $d_{j-1, e-1}=r-e$ and

$$
\begin{aligned}
\operatorname{dim}\left(A_{j-1, e-1}\right) & \leq \operatorname{dim} Q_{\ell, j-1}^{r, e-1}+(r-e)-(j-1) \\
& \leq\left\{(r \ell-1)-2(j-2)-\binom{e-1}{2}\right\}+(r-e)-(j-1) \\
& =\left\{(r(\ell+1)-1)-2(j-1)-\binom{e}{2}\right\}-(j-2)
\end{aligned}
$$

Note that this case only occurs for $j \geq 2$, so that $(j-2)$ is always nonnegative.
B) In the three remaining cases

$$
\varepsilon=e \text { and } i=j-1, j, \text { or } j+1
$$

we begin with the rough estimate $d_{i, e} \leq r+i-1$ as in Section 2. This yields:

$$
\begin{align*}
\operatorname{dim}\left(A_{i, e}\right) & \leq\left\{(r \ell-1)-2(i-1)-\binom{e}{2}\right\}+(r+i-1)-(j-1) \tag{2}\\
& =\left\{(r(\ell+1)-1)-2(j-1)-\binom{e}{2}\right\}-(i-j) \tag{3}
\end{align*}
$$

Thus, if $i=j$ we get exactly the estimate asserted in the Lemma, if $i=j+1$ the estimate is better than what we need by 1 , but if $i=j-1$, the estimate is not good enough and fails by 1 . It is this latter case that we must further study: let $\left[q: \mathcal{O}_{X}^{r} \rightarrow T\right]$ be a point in $Q_{\ell, j-1}^{r, e}$ with $N=\operatorname{ker}(q)$. There are two alternatives:

- Either the fibre $\varphi^{-1}([q]) \cap \psi^{-1}\left(A_{j-1, e}\right)$ is a proper closed subset of $\mathbb{P}(N(x))$ which improves the estimate for the dimension of the fibre $\varphi^{-1}([q])$ by 1 ,
- or this fibre equals with $\mathbb{P}(N(x))$, which means that the socle dimension increases for all modifications of T. In this case we conclude from Lemma 4 that also $i\left(T^{-}\right)=i(T)+1$ for every modification $T^{-}=\operatorname{coker}\left(\mu^{-}: k(x) \rightarrow T\right)$. But, as we just saw, calculation (3), applied to the contribution of $Q_{\ell-1, j}^{r, e}$ to $Q_{\ell, j-1}^{r, e}$, shows that the dimension estimate for the locus of such points $[q]$ in $Q_{\ell, j-1}^{r, e}$ can be improved by 1 compared to the dimension estimate for $Q_{\ell, j-1}^{r, e}$ as stated in the lemma.

Hence in either case we can improve estimate (3) by 1 and get

$$
\operatorname{dim}\left(A_{j-1, e}\right) \leq(r(\ell+1)-1)-2(j-1)-\binom{e}{2}
$$

as required. Thus, the lemma holds for $\ell+1$.
Lemma $8-\psi\left(\varphi^{-1}\left(Q_{\ell}^{r, e}\right)\right) \subset \overline{Q_{\ell+1}^{r, e}}$.
Proof. Let $\left[q: \mathcal{O}_{X}^{r} \rightarrow T\right] \in Q_{\ell, i}^{r, e}$ be a closed point with $N=\operatorname{ker}(q)$. Then $\varphi^{-1}([q])=\mathbb{P}(N(x)) \cong \mathbb{P}^{r+i-1}$ and $\varphi^{-1}([q]) \cap \psi^{-1}\left(Q_{\ell+1}^{r, e+1}\right) \cong \mathbb{P}(\operatorname{im}(G)) \cong \mathbb{P}^{r-e-1}$. Since we always have $e \geq 1, i \geq 1$, a dense open part of $\varphi^{-1}([q])$ is mapped to $Q_{\ell+1}^{r, e}$.

Lemma 9 - If $r \geq 2$ and if Q_{ℓ}^{r-1} is irreducible of dimension $(r-1) \ell-1$, then $Q_{\ell}^{r,<r}:=\bigcup_{e<r} Q_{\ell}^{r, e}$ is an irreducible open subset of Q_{ℓ}^{r} of dimension $r \ell-1$.

Proof. Let M be the variety of all $r \times(r-1)$ matrices over k of maximal rank, and let $0 \rightarrow \mathcal{O}_{M}^{r-1} \rightarrow \mathcal{O}_{M}^{r} \rightarrow \mathcal{L} \rightarrow 0$ be the corresponding tautological sequence of locally free sheaves on M. Consider the open subset $U \subset M \times Q_{\ell}^{r}$ of points $\left(A,\left[\mathcal{O}^{r} \rightarrow T\right]\right)$ such that the composite homomorphism

$$
\mathcal{O}^{r-1} \xrightarrow{A} \mathcal{O}^{r} \longrightarrow T
$$

is surjective. Clearly, the image of U under the projection to Q_{ℓ}^{r} is $Q_{\ell}^{r,<r}$. On the other hand, the tautological epimorphism

$$
\left.\mathcal{O}_{U \times X}^{r-1} \rightarrow \mathcal{O}_{U \times X}^{r} \rightarrow\left(\mathcal{O}_{M} \otimes \mathcal{T}\right)\right|_{U \times X}
$$

induces a classifying morphism $g^{\prime}: U \rightarrow Q_{\ell}^{r-1}$. The morphism $g=\left(p r_{1}, g^{\prime}\right): U \rightarrow$ $M \times Q_{\ell}^{r-1}$ is surjective. In fact, it is an affine fibre bundle with fibre

$$
g^{-1}\left(g\left(A,\left[\mathcal{O}^{r-1} \rightarrow T\right]\right)\right) \cong \operatorname{Hom}_{k}(\mathcal{L}(A), T) \cong \mathbb{A}_{k}^{\ell}
$$

Since Q_{ℓ}^{r-1} is irreducible of dimension $(r-1) \ell-1$ by assumption, U is irreducible of dimension $r \ell-1+\operatorname{dim}(M)$, and $Q_{\ell}^{r,<r}$ is irreducible of dimension $r \ell-1$.

Proof of Proposition 6. The irreducibility of Q_{ℓ}^{r} will be proved by induction over r and ℓ : the case $(\ell=1, r$ arbitrary $)$ is trivial; whereas (ℓ arbitrary,$r=1$) is the case of the Hilbert scheme, for which there exist several proofs ([2], [4]). Assume therefore that $r \geq 2$ and that the proposition holds for (ℓ, r) and $(\ell+1, r-1)$. We will show that it holds for $(\ell+1, r)$ as well.

Recall that $Z^{\prime}:=\varphi^{-1}\left(Q_{\ell}^{r}\right)=Q_{\ell}^{r} \times_{Y_{\ell}} Z$. Every irreducible component of Z^{\prime} has dimension greater than or equal to $\operatorname{dim}\left(Q_{\ell}^{r}\right)+r-1=r(\ell+1)-2$ (cf. Section 2). On the other hand, $\operatorname{dim}\left(\varphi^{-1}\left(Q_{\ell, i}^{r}\right)\right) \leq r \ell-1-2(i-1)+(r+i-1)=r(\ell+1)-i$. Thus an irreducible components of Z^{\prime} is either the closure of $\varphi^{-1}\left(Q_{\ell, 1}^{r}\right)$ (of dimension $r(\ell+1)-1)$) or the closure of $\varphi^{-1}(W)$ for an irreducible component $W \subset Q_{\ell, 2}^{r}$ of maximal possible dimension $r \ell-3$. But according to Lemma 8 the image of $\varphi^{-1}(W)$ under ψ will be contained in the closure of $Q_{\ell+1}^{r,<r}$, unless W is contained in $Q_{\ell, 2}^{r, r}$. But Lemma 7 says that $Q_{\ell, 2}^{r, r}$ has codimension $\geq 2+\binom{r}{2} \geq 3$ if $r \geq 2$, and hence cannot contain W for dimension reasons. Hence any irreducible component of Z^{\prime} is mapped by ψ into the closure of $Q_{\ell+1}^{r,<r}$ which is irreducible by Lemma 9 and the induction hypothesis. This finishes the proof of the proposition.

References

[1] V. Baranovski, On Punctual Quot Schemes for Algebraic Surfaces. Duke e-prints alg-geom/9703038.
[2] J. Briançon, Description de $H^{\text {ilb }}{ }^{n} \mathbb{C}\{x, y\}$. Inventiones math. 41, 45-89 (1977).
[3] A. Iarrobino,Punctual Hilbert Schemes. Memoirs of the AMS, Volume 10, Number 188, 1977.
[4] G. Ellingsrud and S. A. Strømme, An intersection number for the punctual Hilbert Scheme. To appear in Transactions of AMS.
[5] J. Fogarty, Algebraic Families on an Algebraic Surface. Am. J. Math. 90 (1968), 511-521.
[6] David Gieseker and Jun Li, Moduli of high rank vector bundles over surfaces. J. AMS 9 (1996), 107-151.
[7] A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert. Séminaire Bourbaki, 1960/61, no. 221.
[8] Jun Li, Algebraic Geometric Interpretation of Donaldson's Polynomial Invariants. J. Differential Geometry 37 (1993), 417-466.

