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Abstract

It is shown that the punctual quotient scheme Q; parametrizing all zero-
dimensional quotients Of{ — T of lenght ¢ and supported at some fixed
point 0 € A% in the plane is irreducible.

Let X be a smooth projective surface, E a locally free sheaf of rank » > 1 on X,
and let £ > 1 be an integer. Quot(E,¥) denotes Grothendieck’s quotient scheme
[7] that parametrizes all quotients E — T', where T is a zero-dimensional sheaf of
length £. Sending a quotient ' — T' to the point ) . ¢(T;)x in the symmetric
product S*(X) defines a morphism 7 : Quot(E,¢) — S*(X) [7]. It is the purpose
of this note to prove the following theorem:

Theorem 1 — Quot(E,¥) is an irreducible scheme of dimension £(r + 1). The
fibre of the morphism 7 : Quot(E,£) — S*(X) over a point > . la is irreducible of
dimension ) (rl, —1).

Using the irreducibility result, one can check that a generic point in the fibre
over x € S*(X) represents a quotient E — T, where T = Ox . /(s,t‘) and s and ¢
are apropriately chosen local parameters in Ox ;, i.e. T is the structure sheaf of a
curvilinear subscheme in X.

If r =1, i.e. if E is a line bundle, then Quot(E,¢) is isomorphic to the Hilbert
scheme Hilb’(X). For this case, the first assertion of the theorem is due to Fogarty
[5], whereas the second assertion was proved by Briancon [2]. For general r > 2,
the first assertion of the theorem is a result due to J. Li and D. Gieseker [8],[6]. We
give a different proof with a more geometric flavour, generalising a technique from
Ellingsrud and Strgmme [4]. The second assertion is a new result for r > 2. After
finishing this paper we learned about a different approach by Baranovsky [1].

The natural generalizations of the theorem to higher dimensional or singular
varieties are false, as is already apparent in the » = 1 case of the Hilbert schemes:
The dimensions of the strata of quotients which are concentrated in some fixed point
grow much faster with ¢ than the expected dimension of the ‘generic’ stratum.

1 Elementary Modifications

Let X be a smooth projective surface and z € X. If N is a coherent Ox-
sheaf, e(N,) = homx (N, k(z)) denotes the dimension of the fibre N(z), which
by Nakayama’s Lemma is the same as the minimal number of generators of the
stalk N,. If T is a coherent sheaf with zero-dimensional support, we denote
by i(T,) = homy (k(x),T) the dimension of the socle of T, i.e. the submodule
Soc(T,) C T, of all elements that are annihilated by the maximal ideal in Ox ;.



Lemma 2 — Let [¢ : E — T] € Quot(E,{) be a closed point and let N be the
kernel of q. Then the socle dimension of T and the number of generators of N at x
are related as follows:

e(N,) =i(T,) +r.

Proof. Write e(N,) = r + ¢ for some integer ¢ > 0. Then there is a mini-
mal free resolution 0 — O% , = O;ﬁ; — N, — 0, where all coefficients
of the homomorphism a are contained in the maximal ideal of Ox ,. We have
Hom(k(z),T,) = Exty (k(z), N,) and applying the functor Hom(k(z), .) one finds
an exact sequence

0 — Extl (k(2), Ny) — Ext (k(z), O ,) <5 Ext? (k(x), O%).

But as a has coefficients in the maximal ideal, the homomorphism o’ is zero. Thus
Hom(k(x), T) = Exty (k(z), 0% ) = k(x)". O

The main technique for proving the theorem will be induction on the length of
T. Let N be the kernel of a surjection £ — T, let z € X be a closed point, and
let A : N — k(z) be any surjection. Define a quotient £ — T' by means of the
following push-out diagram:

0 0
) )
0 — kizy % T — T — 0
At 1 I
0O — N — E — T — 0
) )
N = N/
) )
0 0

In this way every element (\) € P(N(z)) determines a quotient E — T together
with an element (u) € P(Soc(7},)V). (Here WY := Homy (W, k) denotes the vector
space dual to W.) Conversely, if £ — T" is given, any such (u) determines £ — T
and a point (A\). We will refer to this situation by saying that 7" is obtained from
T by an elementary modification.

We need to compare the invariants for 7" and T": Obviously, £(T") = ¢(T) + 1.
Applying the functor Hom(k(z), .) to the upper row in the diagram we get an exact
sequence

0 — k(z) — Soc(T}) — Soc(T,) — Extly (k(z), k(z)) = k(z)?,

and therefore |i(T,) — i(T.)| < 1. Moreover, we have 0 < e(T}) —e(T,) < 1. Two
cases deserve closer inspection. Firstly, if e increases, then 7" splits:

Lemma 3 — Consider the natural homomorphisms g : N(z) — E(z) and f :
Soc(T,) — T, — T'(z). The following assertions are equivalent

1. e(T))=e(T,) +1

2. (u) & P(ker(f)")
3. (A) € P(im(g)).

Moreover, if these conditions are satisfied, then T' = T dk(z) and i(T)) = i(T,)+1.



Proof. Clearly, e(T)) = e(T,) + 1 if and only if u(1) represents a non-trivial
element in T'(z) if and only if u has a left inverse if and only if A factors through
E. O

Secondly, if i increases for all modifications A from T to any T', then the same
phenomenon occurs for all ‘backwards’ modifications u' from T to any T~:

Lemma 4 — Still keeping the notations above, let E — T} be the modification of
E — T determined by the point (\) € P(N(z)). Similarly, for (u') € P(Soc(T;)Y)
let T, =T/ (k(z)). If i(Ty,) = i(T) + 1 for all (\) € P(N(x)), then i(T;) =
(T, ,) — 1 for all (i) € P(Soc(Ty)") as well.

Proof. Let ® : Homx (N, k(z)) — Homy (ExtY (k(z), N), Ext (k(z), k(z))) be
the homomorphism which is adjoint to the natural pairing
Homy (N, k(z)) ® Extl (k(x), N) — Ext’ (k(z), k(z)).

Identifying Soc(T) = Ext (k(x), N), we see that i(T} ,) = 1+i(T,) — rank(®())).
The action of ®(\) on a socle element u' : k(z) — T can be described by the
following diagram of pull-backs and push-forwards

0O » N —» E —» T —= 0
T

[ T '
0O - N = N, = k@ — 0
Al I [
0 = k(z) - & — k(@) — 0

The assumption that i(Ty ,) = 1 +i(7%) for all A, is equivalent to ® = 0. This
implies that for every p' and every A the extension in the third row splits, which in
turn means that every A factors through N, i.e. that N(z) embeds into N (z).

Hence, for T, = E/N,, = coker(p) we get i(T,, ,) =e(N, ,)—r =e(Nz)+1—r=

i(T,) + 1. O

2 The Global Case

Let Y; = Quot(E,¢) x X, and consider the universal exact sequence of sheaves on
Yy:

0N = Oquet ® E =T — 0.
The function y = (s,z) — i(7Ts,) is upper semi-continuous. Let Y7 ; denote the

locally closed subset {y = (s,z) € Y;|i(Ts,) = i} with the reduced subscheme
structure.

Proposition 5 — Y} is irreducible of dimension (r + 1) + 2. For each i > 0 one
has codim(Yy ;, Ye) > 2i,

Clearly, the first assertion of the theorem follows from this.

Proof. The proposition will be proved by induction on ¢, the case £ = 1 being
trivial: Y7 = P(E) x X, the stratum Y7 1 is the graph of the projection P(E) — X
and Yy ; = 0 for ¢ > 2. Hence suppose the proposition has been proved for some
> 1.

We describe the ‘global’ version of the elementary modification discussed above.
Let Z = P(N) be the projectivization of the family A and let ¢ = (p1,¢2) : Z —



Yy, = Quot(E, £) x X denote the natural projection morphism. On Z x X there is
canonical epimorphism

A (o1 xidx)*"N = (idz,92): "N = (idz,92).0z(1) =: K.
As before we define a family 7' of quotients of length £ + 1 by means of A:

0 — K — T — (p1,ldx)*T — 0

\ [ |

0 — (p1,idx)*N — O0z0FE — (p,idx)*T — 0

Let ¢ : Z — Quot(E, £ + 1) be the classifying morphism for the family 7", and
define ¢ := (1,09 := ¢2) : Z — Yp11. The scheme Z together with the morphisms
¢:Z = Yyand ¢ : Z — Y4, allows us to relate the strata Y, ; and Y11 ;. Note
that ¢(Z) = UjZl Yiga,-

The fibre of ¢ over a point (s,z) € Yz is given by P(N;(z)) = P 1+i since
dim(Ng(z)) =r +i(Ts,) =r+i by Lemma 2. Similarly, the fibre of 1) over a point
(s',2) € Yyy1,5 is given by P(Soc(7, ,)¥) = P/~1. If T" is obtained from T' by an
elementary modification, then |¢(T") —i(T")| < 1 as shown above. This can be stated
in terms of ¢ and 1 as follows: For each j > 1 one has:

P Vg € | et ().
li—j]<1

Using the induction hypothesis on the dimension of Yy ; and the computation of the
fibre dimension of ¢ and 1), we get

dim(Yp41 )+ (7 —1) < lm;a‘)él{(r +1)0+2-2i+(r—1+14)}
i—j|<

and
dim(Ypqq1 ) < (r+1)(0+1)+2—-25 — |'m'i\21{i —-j+1}
i—j|<

As min|;_j<1{i—j+1} > 0, this proves the dimension estimates of the proposition.

It suffices to show that Z is irreducible. Then Quot(E, £+ 1) = 11 (Z) and Yyi1q
are irreducible as well.

Since X is a smooth surface, the epimorphism Oguot @ E — T can be completed
to a finite resolution

0—A—=B—0quut®E —T —0

with locally free sheaves A and B on Yy of rank n and n + r, respectively, for some
positive integer n. It follows that Z = P(N) C P(B) is the vanishing locus of the
composite homomorphism ¢*A — ¢*B — Op)(1). In particular, assuming by
induction that Yp is irreducible, Z is locally cut out from an irreducible variety
of dimension (r + 1)¢ + 2 + (r + n — 1) by n equations. Hence every irreducible
component of Z has dimension at least (r 4+ 1)(¢+ 1). But the dimension estimates
for the stratum Y, ; and the fibres of ¢ over it yield:

dim(p ' (V) S (r+ ) +2-2i+(r+i—1)=(r+1)(l+1)—i,

which is strictly less than the dimension of any possible component of Z, if ¢ > 1.
This implies that the irreducible variety ¢! (Y7,0) is dense in Z. Moreover, since the
fibre of 4 over Yy11 1 is zero-dimensional, dim(Yy41) = dim(Yy1)+2 = dim(Z) +2
has the predicted value. O



3 The Local Case

We now concentrate on quotients £ — T, where T has support in a single fixed
closed point x € X. For those quotients the structure of E is of no importance, and
we may assume that E = O%. Let @)} denote the closed subset

{[0% = T] € Quot(O%., )] Supp(T) = {z}}

with the reduced subscheme structure. We may consider () as a subscheme of Yy ;
by sending [q] to ([¢],z). Then it is easy to see that ¢~ *(Q}) = ¥ 1 (Q},,)- Let
this scheme be denoted by Z’.

We will use a stratification of ()} both by the socle dimension ¢ and the number
of generators e of 7" and denote the corresponding locally closed subset by Qr’e
Moreover, let Qj; = U, Qy; and define Qy° similarly. Of course, Q;; is empty
unless 1 <i < /fand 1< e <min{r,¢}.

To prove the second half of the theorem it suffices to show:

Proposition 6 — Qj is an irreducible variety of dimension rf — 1.
Lemma 7 — dim(Qy7) < (rf—1) — (2(i = 1) + (5))

Proof. By induction on £: if £ = 1, then Q = P"~', and Q7; =0 ife > 2 or
1 > 2. Assume that the lemma has been proved for some ¢ > 1.

Let[¢' : O% = T'] € Ql+1 be a closed point. Suppose that the map u : k(z) —
T'(x) represents a point in ¥ ~1([q ’]) P(Soc(T})V) and that T}, = coker(u) is the
corresponding modification. If i = (T, ,) and ¢ = e(T} ), then, according to
Section 1, the pair (i,¢) can take the following values:

(i,E):(j—l,e—l), (j_lve)v (jve) or (j+1,6), (1)
in other words:
Qi) ce t@Znu U oet@r.
li—j|<1

Subdivide A = Q into four locally closed subsets A;. according to the generic
value of (i,e) on the fibres of . Then

dim(4;.) + (j — 1) < dim(Qp;) + die,
where d; . is the fibre dimension of the morphism
@A) NN QD) — QFF.

By the induction hypothesis we have bounds for dim(QZ’f), and we can bound d; .
in the four cases (1) as follows:

A) Let [¢: Oy — T] € Q5" ! be a closed point with N = ker(g). As we
are looking for modlﬁcatlons T with e(T,) = e, we are in the situation of Lemma
3 and may conclude

e M (lg) N (Aemrj—1)

B(im(g : N(x) — k(2)"))
P(ker(k(x)" — T(x))) = P',

12



since im(k(z)" — T'(z)) 2 k®~'. Hence dj_1,,-1 =r — e and
dim(4;_1.1) < dmQp_{+(r—e)—(j—1)

< {ot-v-26-2- (")} +e-0-G-1

= {eerv-n-20-1-(5)}-u-2.

Note that this case only occurs for j > 2, so that (j — 2) is always nonnegative.

B) In the three remaining cases
e=eandi=j—1,73,orj+1

we begin with the rough estimate d; . < r 44— 1 as in Section 2. This yields:
dim(A4;.) < {(ré -1 —-2(i—-1)— (;) } +(r+i-1)—-(G-1 (2)
) e .
= {oern-n-2--(5)} - Q

Thus, if ¢ = j we get exactly the estimate asserted in the Lemma, if i = j 4+ 1 the
estimate is better than what we need by 1, but if i = j — 1, the estimate is not
good enough and fails by 1. It is this latter case that we must further study: let
[¢: O% — T] be a point in Q,’;_, with N =ker(g). There are two alternatives:

— FEither the fibre o= ([q]) N1 (Aj_1,.) is a proper closed subset of P(N(z))
which improves the estimate for the dimension of the fibre o1 ([q]) by 1,

— or this fibre equals with P(N(z)), which means that the socle dimension
increases for all modifications of T'. In this case we conclude from Lemma 4
that also ¢(T~) = i(T) +1 for every modification T~ = coker(u™ : k(z) — T).
But, as we just saw, calculation (3), applied to the contribution of @, j to
Q;:]e'—u shows that the dimension estimate for the locus of such points [g] in

@’;_, can be improved by 1 compared to the dimension estimate for Q;"_;
as stated in the lemma.

Hence in either case we can improve estimate (3) by 1 and get

dim(A;_1.0) < (r(0+1) = 1) —2(j - 1) - <;>

as required. Thus, the lemma holds for ¢ + 1. O

Lemma 8 — (¢ 1(Qy°)) C Qyy,.

Proof. Let [q : O% — T] € @ be a closed point with N = ker(q). Then
¢ 1(lg) = P(N(z)) = P+t and o !([g]) Ny 1 Q") = P(im(@)) = P,
Since we always have e > 1,7 > 1, a dense open part of p !([q]) is mapped to

r.e
o1 O

Lemma 9 — Ifr > 2 and if Q, " is irreducible of dimension (r — 1){ — 1, then
Qy~" =U.., Q° is an irreducible open subset of Q} of dimension r{ — 1.



Proof. Let M be the variety of all 7 x (r — 1) matrices over k of maximal rank,
and let 0 — (’)}“\4_1 — O}y = £ — 0 be the corresponding tautological sequence
of locally free sheaves on M. Consider the open subset U C M x @} of points
(A,[O" — T7) such that the composite homomorphism

ot Ao T

is surjective. Clearly, the image of U under the projection to @} is Q;<". On the
other hand, the tautological epimorphism

Olx = Opix = (O @ T)luxx

induces a classifying morphism ¢' : U — Qg_l. The morphism g = (pr1,¢') : U —
M x Q;fl is surjective. In fact, it is an affine fibre bundle with fibre

97 (9(4,[0"" = T1)) = Homy,(L£(4), T) = AL

Since Q™" is irreducible of dimension (r — 1)¢ — 1 by assumption, U is irreducible
of dimension r¢ — 1 + dim(M), and Q)" is irreducible of dimension r¢ — 1. O

Proof of Proposition 6. The irreducibility of @} will be proved by induction over
r and ¢: the case (¢ = 1,r arbitrary ) is trivial; whereas (¢ arbitrary ,» = 1) is the
case of the Hilbert scheme, for which there exist several proofs ([2], [4]). Assume
therefore that r > 2 and that the proposition holds for (¢,7) and (¢4 1,7 —1). We
will show that it holds for (¢ + 1,r) as well.

Recall that Z' := ¢~ (Q}) = Q) xy, Z. Every irreducible component of Z’ has
dimension greater than or equal to dim(Qj)+r—1 = r(¢+1)—2 ( cf. Section 2). On
the other hand, dim(p="(Qj;)) <rf—1-2(i —1)+ (r+i—1) = r(£+1) —i. Thus
an irreducible components of Z’ is either the closure of cp_l(Qzl) (of dimension
(£ +1) — 1)) or the closure of ¢~ (W) for an irreducible component W C Q7 ,
of maximal possible dimension ¢ — 3. But according to Lemma 8 the image of
@~ (W) under 1 will be contained in the closure of @}, unless W is contained
in Qp5. But Lemma 7 says that @, has codimension > 2 + (5) >3if r>2, and
hence cannot contain W for dimension reasons. Hence any irreducible component,

of Z' is mapped by 1 into the closure of Q;flr which is irreducible by Lemma 9
and the induction hypothesis. This finishes the proof of the proposition. O
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